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Abstract. Malware embedded in documents is regularly used as part
of targeted attacks. To hinder a detection by anti-virus scanners, the
embedded code is usually obfuscated, often with simple Vigenère ci-
phers based on XOR, ADD and additional ROL instructions. While for
short keys these ciphers can be easily cracked, breaking obfuscations with
longer keys requires manually reverse engineering the code or dynami-
cally analyzing the documents in a sandbox. In this paper, we present
Kandi, a method capable of efficiently decrypting embedded malware
obfuscated using Vigenère ciphers. To this end, our method performs a
probable-plaintext attack from classic cryptography using strings likely
contained in malware binaries, such as header signatures, library names
and code fragments. We demonstrate the efficacy of this approach in dif-
ferent experiments. In a controlled setting, Kandi breaks obfuscations
using XOR, ADD and ROL instructions with keys up to 13 bytes in less
than a second per file. On a collection of real-world malware in Word,
Powerpoint and RTF files, Kandi is able to expose obfuscated malware
from every fourth document without involved parsing.
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1 Introduction

Documents containing malware have become a popular instrument for targeted
attacks. To infiltrate a target system, malicious code is embedded in a benign
document and transfered to the victim, where it can—once opened—unnoticeably
infiltrate the system. Two factors render this strategy attractive for attackers:
First, it is relatively easy to lure even security-aware users into opening an un-
trusted document. Second, the complexity of popular document formats, such
as Word and PDF, constantly gives rise to zero-day vulnerabilities in the respec-
tive applications, which provide the basis for unnoticed execution of malicious
code. Consequently, embedded malware has been used as part of several targeted
attack campaigns, such as Taidoor [28], Duqu [1] and MiniDuke [6].

To hinder a detection by common anti-virus scanners, malicious code em-
bedded in document files is usually obfuscated, often in multiple layers with
increasing complexity. Although there exist a wide range of possible obfuscation
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strategies, many attackers resort to simple cryptographic ciphers when imple-
menting the first obfuscation layer in native code. Often these ciphers are vari-
ants of the so-called Vigenère cipher using XOR and ADD/SUB instructions for
substitution and ROL/ROR for transposition. The resulting code can fit into
less than 100 bytes and, in contrast to strong ciphers, exposes almost no de-
tectable patterns in the documents [see 4]. As an example, Figure 1 shows a
simple deobfuscation loop using XOR that fits into 28 bytes.

Due to the simplicity and small size, such native code seems sufficient for
a first obfuscation layer, yet the resulting encryption is far from being crypto-
graphically strong. For short keys up to 2 bytes the obfuscation can be trivially
broken using brute-force attacks. However, uncovering malware obfuscated with
longer keys, as for example the 4-byte key in Figure 1, still necessitates manually
reverse engineering the code or dynamically analyzing the malicious document
in a sandbox with vulnerable versions of the target application [e.g., 7, 17, 20].
While both approaches are effective in removing the obfuscation layer, they re-
quire a considerable amount of time in practice and are thus not suitable for
analyzing and detecting embedded malware at end hosts.

In this paper, we present Kandi, a method capable of efficiently breaking
Vigenère-based obfuscations and automatically uncovering embedded malware
in documents without the need to parse the document’s file format. The method
leverages concepts from classic cryptography in order to conduct a probable-
plaintext attack against common variants of the Vigenère cipher. To this end,
the method first approximates the length of possible keys and then computes
so-called difference streams of the document and plaintexts likely contained in
malware binaries. These plaintexts are automatically retrieved beforehand and
may include fragments of the PE header, library names and common code stubs.
Using these streams it is possible to look for the plaintexts directly in the ob-
fuscated data. If sufficient matches are identified, Kandi automatically derives
the obfuscation key and reveals the full embedded code for further analysis, for
example, by an anti-virus scanner or a human expert.

We demonstrate the efficacy of this approach in an empirical evaluation with
documents of different formats and real malware. In a controlled experiment
Kandi is able to break obfuscations using XOR and ADD/SUB with keys up
to 13 bytes. On a collection of real-world malware in Word, Powerpoint and
RTF documents with unknown obfuscation, Kandi is able to deobfuscate every
fourth document and exposes the contained malware binary, including several

00: be XX XX XX XX mov edx, ADDRESS

05: 31 db xor ebx, ebx

07: 81 34 1e XX XX XX XX start: xor dword [edx + ebx], KEY

0e: 81 c3 04 00 00 00 add ebx, 0x04

14: 81 fb XX XX XX XX cmp ebx, LENGTH

1a: 7c eb jl start

Fig. 1. Example of native code for a Vigenère-based obfuscation. The code snippet
deobfuscates data at ADDRESS of length LENGTH using the 4-byte key KEY. For simplicity
we omit common tricks to avoid null bytes in the code.
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samples of the recent attack campaign MiniDuke [6]. Moreover, Kandi is sig-
nificantly faster than dynamic approaches and enables scanning documents and
deobfuscating malware at a throughput rate of 16.46 Mbit/s, corresponding to
5 documents of ∼400 kB per second.

It is necessary to note that Kandi targets only one of many possible obfus-
cation strategies. If a different form of obfuscation is used or no plaintexts are
known in advance, the method obviously cannot uncover obfuscated data. We
discuss these limitations in Section 5 specifically. Nonetheless, Kandi defeats a
prevalent form of obfuscation in practice and thereby provides a valuable ex-
tension to current methods for the analysis of targeted attacks and embedded
malware in the wild.

The rest of this paper is organized as follows: Obfuscation using Vigenère
ciphers and classic cryptanalysis are reviewed in Section 2. Our method Kandi
is introduced in Section 3 and an empirical evaluation of its capabilities is pre-
sented in Section 4. We discuss limitations and related work in Section 5 and 6,
respectively. Section 7 concludes the paper.

2 Obfuscation and Cryptanalysis

The obfuscation of code can be achieved using various techniques, ranging from
simple encodings to strong ciphers and emulator-based packing. Implementations
of complex techniques, however, often contain characteristic patterns and thus
increase the risk of detection by anti-virus scanners [4]. As a consequence, simple
encodings and weak ciphers are still widely used for obfuscation despite their
shortcomings. In the following section we investigate a specific type of such
basic obfuscation, which is frequently used to hide malware in documents.

2.1 Vigenère-based Obfuscation

The substitution of bytes using XOR and ADD/SUB—a variant of so-called
Vigenère ciphers [19]—is one of the simplest yet widely used obfuscation tech-
niques. These ciphers are regularly applied for cloaking shellcodes and embedded
malware. Figure 1 and 2 show examples of these ciphers in x86 code.

start: mov al, byte [edx]

add al, ADD_KEY

rol al, ROL_KEY

mov byte [edx], al

inc edx

cmp edx, LENGTH

jl start

(a) Obfuscation using ADD and ROL

start: mov al, byte [PTR + ebx]

sub byte [edx], al

inc ebx

and ebx, 0x0f

inc edx

cmp edx, LENGTH

jl start

(b) Obfuscation with 16-byte key

Fig. 2. Code snippets for Vigenère-based obfuscation: (a) Data stored at [edx] is
obfuscated using ADD and ROL, (b) Data stored at [edx] is obfuscated using SUB
with the 16-byte key at PTR.
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Due to the implementation with only a few instructions, Vigenère-based ob-
fuscation keeps a small footprint in the code, thereby complicating the task of
extracting reliable signatures for anti-virus scanners. Additionally, this obfusca-
tion is fast, easily understandable and good enough to seemingly protect mali-
cious code in the first layer of obfuscation. Despite these advantages Vigenère
ciphers suffer from several well-known weaknesses.

Definition of Vigenère Ciphers. Before presenting attacks against Vigenère-
based obfuscation, we first need to introduce some notation and define the family
of Vigenère ciphers studied in this work. We consider the original code of a mal-
ware binary as a sequence of n bytes M1 . . .Mn and similarly represent the re-
sulting obfuscated data by C1 . . . Cn. When referring to cryptographic concepts,
we sometimes denote the original code as plaintext and refer to the obfuscated
data as ciphertext. The Vigenère-based obfuscation is controlled using a key
K1 . . .Kl of l bytes, where l usually is much smaller than n. Moreover, we use
K̂i = K(i mod l) to access the individual bytes of the key.

Using this notation, we can define a family of Vigenère ciphers, where each
byte Mi is encrypted with the key byte K̂i using the binary operation ◦ and
decrypted using its inverse operation ◦−1, as follows:

Ci = Mi ◦ K̂i and Mi = Ci ◦−1 K̂i.

This simple definition covers several variants of the Vigenère cipher, as im-
plementations only differ in the choice of the two operations ◦ and ◦−1. For
example, if we define ◦ as addition and ◦−1 as subtraction, we obtain the classic
form of the Vigenère cipher. Table 1 lists binary operations that are frequently
used for obfuscating malicious code. Note that a subtraction can be expressed
as an addition with a negative element and thus is handled likewise.

Table 1. Operators of Vigenère ciphers used for obfuscation.

Operation Encryption ◦ Decryption ◦−1

Addition (ADD) (X + Y ) mod 256 (X − Y ) mod 256
Subtraction (SUB) (X − Y ) mod 256 (X + Y ) mod 256
Exclusive-Or (XOR) X ⊕ Y X ⊕ Y

Theoretically, any pair of operations that is inverse to each other can be
used to construct a Vigenère cipher. In practice, most implementations build
on logic and arithmetic functions that induce a commutative group over bytes.
That is, the operation ◦ is commutative and associative as well as there exists an
identity element and inverse elements providing the operation ◦−1. These group
properties are crucial for different types of efficient attacks as we will see in
Sections 2.2 and 2.4. Note that ROL and ROR instructions are not commutative
and thus are treated differently in the implementation of our method Kandi
presented in Section 3.
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Another important observation is that some bytes are encrypted with the
same part of the key. In particular, this holds true for every pair of bytes Mi

and Mj whose distance is a multiple of the key length, that is, i ≡ j (mod l).
This repetition of the key is a critical weakness of Vigenère ciphers and can be
exploited to launch further attacks that we discuss in Sections 2.3 and 2.4.

With these few basic definitions in mind, we can pursue three fundamentally
different approaches for attacking Vigenère ciphers: (1) brute-force attacks and
heuristics, (2) ciphertext-only attacks and (3) probable-plaintext attacks. In the
following, we discuss each of these attack types in detail and check whether they
are applicable for deobfuscating embedded malware.

2.2 Brute-force Attacks and Heuristics

A straightforward way of approaching malware obfuscations is to brute-force
the key used by the malware author. There are two basic implementations for
such an attack: First, one encrypts all plaintext patterns that are assumed to
be present in the original binary with each and every key and tries to match
those. Second, one decrypts the binary or parts of it and looks for the presence
of the plaintext as a usual signature engine would do. In both cases a valid key
is derived if a certain amount of plaintexts match. For short keys, this approach
is both fast and effective. In practice, brute-force attacks prove to be a valuable
tool for analyzing malware obfuscated using keys up to 2 bytes [3, 26].

Theoretically, an exhaustive search over the complete key space can be used
to also derive keys with more than 2 bytes. However, this obviously comes at
the price of runtime performance. For a key length of only 4 bytes there are
more than 4.2 billion combinations that need to be checked in the worst case.
This clearly exceeds the limits of what is possible in the scope of the deobfusca-
tion of embedded malware. Even worse, 4-byte and 8-byte keys fit the registers of
common CPU architectures and therefore, do not require much different deobfus-
cation routines. In fact, the underlying logic is identical to the use of single-byte
keys and the code size is only marginally larger as illustrated in Figure 1.

A more clever way of approaching the problem is by relying on the structure
of embedded malware binaries, which are often PE files. In this format \x00 bytes
are used as padding for sections and headers which gives rise to a heuristic. We
recall from Section 2.1 that the binary operation ◦ has an identity element,
which simply is 0 for XOR as well as ADD instructions. Therefore, whenever
a large block of \x00 bytes is encrypted, the key is revealed multiple times
and can be read off without extra effort. Hence, once a highly repetitive string is
spotted in obfuscated data, deobfuscation is a simple task for a malware analyst.
According to our tests the very same technique is leveraged in a proprietary
system for the analysis of malware called Cryptam [16]. While effective in many
cases when a full binary including padding is obfuscated, this heuristic fails when
a malware does not encrypt \x00 bytes. Furthermore, such an approach cannot
differ between variants of Vigenère ciphers. Since XOR and ADD have the same
identity element, there is no way to decide which one was used for obfuscation
in this setting.
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2.3 Ciphertext-Only Attacks

A more advanced type of classic attacks against Vigenère ciphers only makes
use of the ciphertext. Some of these attacks can be useful for determining the
length of the obfuscation key, whereas others even enable recovering the key if
certain conditions hold true in practice.

Index of Coincidence. A classic approach for determining the key length
from ciphertext only is the index of coincidence, commonly denoted as κ [9, 10].
Roughly speaking it represents the ratio of how many bytes happen to appear
at the same positions if you shift data against itself. Formally, the index of
coincidence is defined as

κ =

∑256
i=1 fi(fi − 1)

n(n− 1)
,

where fi are the byte frequencies in data of n bytes. Under the condition that
we know the index of some plaintext κp we are able to infer the key length l of
the Vigenère cipher. It is estimated as the ratio of the differences of κp to the
index of random data κr and the ciphertext κc:

l ≈ κp − κr
κc − κr

.

The Kasiski Examination. Another ciphertext-only attack for determining
the key length is the so-called Kasiski examination [12]. The underlying as-
sumption of this method is that the original plaintext contains some identical
substrings. Usually these patterns would be destroyed by the key; however, if two
instances of such substrings are encrypted with the same portion of the key, the
encrypted data contains a pair of identical substrings as well. This implies that
the distance between the characters of these substrings is a multiple of the key
length. Thus, by gathering identical substrings in the ciphertext, it is possible
to support an assumption about the key length.

Key Recovery using Frequency Analysis. Natural languages tend to have a
very characteristic frequency distribution of letters. For instance, in the English
language the letter e is with more than 12% the significantly most frequent
letter in the alphabet [14]. Only topped by the space character, which is used in
written texts in order to separate words.

This frequency distribution can be exploited to derive the key used for the
encryption. As one can easily imagine, the actual frequency distribution does
not change by simply replacing one character with another as in the case of a
key of length l = 1. The larger the key length gets, the more the distribution is
flattened out because identical letters may be translated differently depending
on their position in the text. However, since it is possible to determine the length
of the key beforehand, one can perform the very same frequency analysis on all
characters that were encrypted with the same single-byte key K̂i.
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Fig. 3. The byte frequency distributions of English text and Windows PE files.

Although effective in decrypting natural language text, key recovery using
frequency analysis is not suitable for deobfuscating embedded malware. If the
obfuscated code corresponds to regular PE files, the byte frequencies are almost
equally distributed and can hardly be discriminated, because executable code,
header information and other types of data are mixed in this format. As an
example, Figure 3 shows the byte frequency distributions of English text and PE
files, where except for a peak at \x00 the distribution of PE files is basically flat.
The presented ciphertext-only attacks thus only provide means for determining
the key length of Vigenère-based obfuscation, but without further refinements
are not appropriate for actually recovering the key.

2.4 Probable-Plaintext Attacks

To effectively determine the key used in a Vigenère-based obfuscation, we con-
sider classic attacks based on known and probable plaintexts. We refer to these
attacks as probable-plaintext attacks, as we cannot guarantee that a certain plain-
text is indeed contained in an obfuscated malware binary.

Key Elimination. In particular, we consider the well-known technique of key
elimination. The idea of this technique is to determine a relation between the
plaintext and ciphertext that does not involve the key: Namely, the difference
of bytes that are encrypted with the same part of the key. Formally, for a key
byte K̂i this difference can be expressed using the inverse operation ◦−1 as:

Ci ◦−1 Ci+l = (Mi ◦ K̂i) ◦−1 (Mi+l ◦ K̂i) = Mi ◦−1 Mi+l.

Note that this relation of differences only applies if the operator used for the Vi-
genère cipher induces a commutative group. For example, if we plug in the pop-
ular instructions XOR and ADD from Table 1, the difference of the obfuscated
bytes Ci and Ci+l allows to reason about the difference of the corresponding
plaintext bytes:

Ci ⊕ Ci+l = (Mi ⊕ K̂i)⊕ (Mi+l ⊕ K̂i) = Mi ⊕Mi+l

Ci − Ci+l = (Mi + K̂i)− (Mi+l + K̂i) = Mi −Mi+l.

Based on this observation, we can implement an efficient probable-plaintext
attack against Vigenère ciphers. Given a plaintext P = P1 . . . Pm, we introduce
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the difference streams ∆P and ∆C. If the difference streams match at a specific
position and the plaintext P is sufficiently large, we have successfully determined
the occurrence of a plaintext in the obfuscated data. In particular, we compute
the difference stream

∆P = (P1 ◦−1 P1+l) . . . (Pm−l ◦−1 Pm)

for the plaintext P and compare it against each position i of the ciphertext C
using the corresponding stream

∆C = (Ci ◦−1 Ci+l) . . . (Ci+m−l ◦−1 Ci+m).

Using this technique, we can efficiently search for probable plaintexts in data
obfuscated using a Vigenère cipher without knowing the key. This enables us to
check for common strings in the obfuscated code, such as header information,
API functions and code stubs. Once the position of a probable plaintext is found
it is possible to derive the used key by applying the appropriate inverse operation:
Kj = Ci+j ◦−1 Pi+j with i being the position where the difference stream of a
probable plaintext matches. The more plaintexts match in the obfuscated code,
the more reliably the key can finally be determined.

3 Deobfuscating Embedded Malware

After describing attacks against Vigenère ciphers, we now present our method
Kandi that combines and extends these attacks for deobfuscating embedded
malware. The three basic analysis steps of Kandi are described in the following
sections and outlined in Figure 4. First, our method extracts probable plaintexts
from a representative set of code (Section 3.1). Applied to an unknown document,
it then attempts to estimate the key length (Section 3.2) and finally break any
Vigenère-based obfuscation if present in the file (Section 3.3).

Code
Code

Code
Code

A

BCA
A

A BC
A BC

BC

BC DOC Z XYDOC S S

Probable plaintexts

Key
Key 
length

Gaps between 
recurring substrings

Frequent substrings

Plaintexts

(a) (b) (c) 

Fig. 4. Schematic depiction of Kandi and its analysis steps: (a) Extraction of plain-
texts, (b) derivation of the key length and (c) probable-plaintext attack.

In particular, we are using the Kasiski examination for determining the
key length in step (b) and the technique of key elimination against XOR and
ADD/SUB substitutions in step (c). Additionally, we are testing each possible
transposition for ROL/ROR instructions. We consider this a legit compromise
since there exists only a few combinations to check.
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3.1 Extraction of Plaintexts

The deobfuscation performance of Kandi critically depends on a representative
set of probable plaintexts. In the scope of this work, we focus on Windows PE
files, as these are frequently used as initial step of an attack based on infected
documents. However, our method is not restricted to this particular type of data
and can also be applied to other representations of code from which probable
plaintexts can be easily extracted, such as DEX files and ELF objects.

In the first step, we thus extract the most common binary strings found in
PE files distributed with off-the-shelf Windows XP and Windows 7 installations.
Profitable plaintexts are, for instance, the DOS stub and its text, API strings,
library names or code patterns such as push-call sequences. To determine these
strings efficiently, we process the collected PE files using a suffix array and
extract all binary strings that appear in more than 50% of the files. Additionally,
we filter the plaintexts according to the following constraints:

– Plaintext length. In order to ensure an expressive set of probable plaintext,
we require that each plaintext is at least 4 bytes long.

– Zero bytes. As described in Section 2.2, a disadvantage of common heuris-
tics is that they are not able to deal with malware that does not obfuscate
\x00 byte regions. In order not to suffer from the very same drawback, we
completely exclude \x00 bytes and reject plaintexts containing them.

– Byte repetitions. We also exclude plaintexts that contain more than four
repetitions of a single byte. These might negatively influence the key elimi-
nation as described in Section 2.4.

We are well aware and acknowledge that there exist more sophisticated ways
to extract probable plaintexts. This for instance is day-to-day business of the
anti-virus industry when generating signatures for their detection engines. Also,
well-known entrypoint stubs as well as patterns from specific compilers, packers
and protectors might represent valuable probable plaintexts.

3.2 Deriving the Key Length

In the second step, Kandi uses the Kasiski examination (Section 2.3) to inspect
the raw bytes of a document—without any further parsing or processing of the
file. The big advantage of this method over the index of coincidence proposed by
Friedman [9] is that we neither need to rely on the byte distribution of the original
binary nor do we have to precisely locate the embedded malware. Furthermore,
the Kasiski examination allows us to take multiple candidates of the key length
into consideration. Depending on the amount of identical substrings that suggest
a particular key length, we construct a ranking of candidates for later analysis.
That way, it is possible to compensate for and recover from misinterpretations.

However, finding pairs of identical substrings in large amounts of data needs
careful algorithm engineering in order to work efficiently. We again make use
of suffix arrays for determining identical substrings in linear time in the length
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of the analyzed document. Since the Kasiski examination only states that the
distances between identical substrings in the ciphertext refer to multiples of
the key length, it is necessary to also examine the integer factorization thereof.
Fortunately, there exists a shortcut to this factorization step that works very well
in practice: If Kandi returns a key that repeats itself, e.g. 13 37 13 37, this
indicates that we correctly derived the key but under an imprecise assumption
of the key length (l = 4 rather than 2). In such cases we simply collapse the
repeating key and correct the key length accordingly.

3.3 Breaking the Obfuscation

Equipped with an expressive set of probable plaintexts and an estimation of the
key length, it is now possible to mount a probable-plaintext attack against Vi-
genère-based obfuscation. The central element of this step is the key elimination
introduced in Section 2.4. It enables us to look for probable plaintexts within the
obfuscated data and derive the used key automatically. Again, Kandi directly
operates on the raw bytes of a document and thereby avoids parsing the file.

Robust Key Recovery. If a probable plaintext is longer than the estimated
key length, the overlapping bytes can be used to reinforce our assumption about
the key. To this end, we define the overlap ratio r that is used to specify how
certain we want to be about a key candidate. The larger r is, the stricter Kandi
operates and the more reliable is the key. If we set r = 0.0, a usual match of
plaintexts is enough to support the evidence of a key candidate. This means
that we will end up with a larger amount of possibly less reliable hints. Our
experiments show that for the grand total incorrect guesses will average out and
in many cases it is possible to reliably deobfuscate embedded malware.

If a more certain decision is desired the overlap ratio r can be increased.
However, for larger values of r we require longer probable plaintexts: r = 0.0
only requires a minimal overlap, r = 0.5 already half of the probable plaintext’s
length and r = 1.0 twice the size. As an example, if the estimated key length is 4
and r = 0.5, only plaintexts of at least 6 bytes are used for the attack. Depending
on the approach chosen to gather probable plaintexts, it might happen that
the length of the available plaintexts ends up being the limiting factor for the
deobfuscation. We will evaluate this in the next section.

Incorporating ROL and ROR. Finally, in order to increase the effectiveness
of Kandi, we additionally consider transpositions using ROL and ROR instruc-
tions. ROL and ROR are each others inverse function, that is, when iterating
over all possible shift offsets they generate exactly the same output but in differ-
ent order. Furthermore, in most implementations these instructions operate on
8 bits only such that the combined overall number of transpositions to be tested
is very small. Consequently, we simply add a ROL shift as a preprocessing step
to Kandi. Although we attempt to improve over a plain brute-force approach
for breaking obfuscation, we consider the 7 additional tests as a perfectly legit
tradeoff from a pragmatic point of view.
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We are also well aware that it is possible to render our method less effective
by making use of chaining or adding other computational elements that are not
defined in the scope of Vigenère ciphers and therefore out of reach for Kandi. We
discuss this limitation in Section 5. Nevertheless, our evaluation shows that we
are able to deobfuscate a good deal of embedded malware in the wild, including
recent samples of targeted attack campaigns, such as MiniDuke [6]. Thereby,
Kandi proves to be of great value for day-to-day business in malware analysis.

4 Evaluation

We proceed to evaluate the deobfuscation capabilities and runtime performance
of Kandi empirically. Since it is hard to determine whether embedded malware
in the wild is actually using Vigenère-based obfuscation or not, we start off with
a series of controlled experiments (Section 4.1). We then continue to evaluate
Kandi on real-world malware in Word, Powerpoint and RTF documents as well
as different image formats (Section 4.2). We need to stress that this collection
contains malware with unknown obfuscation. Nonetheless, Kandi is able to ex-
pose obfuscated malware in every fourth file, thereby empirically proving that
(a) Vigenère ciphers are indeed used in the wild and (b) that our method is able
to reliably reveal the malicious payload in these cases.

4.1 Controlled Experiments

To begin with, we evaluate Kandi in a controlled setting with known ground
truth, where we are able to exactly tell if a deobfuscation attempt was suc-
cessful or not. In particular, we conduct two experiments: First, we obfuscate
plain Windows PE files and apply Kandi to them. In the course of that, we
measure the runtime performance and throughput of our approach. Second, the
obfuscated PE files are embedded in benign Word documents in order to show
that Kandi not only works on completely encrypted data, but is also capable of
deobfuscating files embedded inside of documents.

Evaluation Datasets. In order to create a representative set of PE files for the
controlled experiments, we simply gather all PE files in the system directories
of Windows XP SP3 (system and system32) and Windows 7 (System32 and
SysWOW64). This includes stand-alone executables as well as libraries and drivers
and yields a total of 4,780 files. We randomly obfuscate each of the PE files with
a Vigenère cipher using either XOR, ADD or SUB. We draw random keys for
this obfuscation and vary the key length from 1 to 32 bytes, such that we finally
obtain 152,960 (32 × 4,780) unique obfuscated PE files.

To study the deobfuscation of embedded code, we additionally retrieve one
unique and malware-free Word document for each PE file from VirusTotal and
use it as host for the embedding. Malware appearing in the wild would be em-
bedded at positions compliant with the host’s file format. This theoretically
provides valuable information where to look for embedded malware. As Kandi
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does not rely on parsing the host file, we simply inject the obfuscated PE files
at random positions. We end up with a total of 152,960 unique Word documents
each containing an obfuscated PE file.
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Fig. 5. Deobfuscation performance of Kandi on obfuscated PE files. Figure (b) shows
the performance for different overlap ratios.

Deobfuscation of Obfuscated PE Files. To demonstrate the capability of
our method to break Vigenère-based obfuscations, we first apply Kandi to the
152,960 obfuscated PE files. The probable plaintexts for this experiment are
retrieved as described in Section 3.1 without further refinements. Figure 5(a)
shows results for this experiment, where the key length is plotted against the
rate of deobfuscated PE files. For key lengths up to 13 bytes, the obfuscation can
be reliably broken with a success rate of 93% and more. This nicely illustrates
the potential of Kandi to automatically deobfuscate malware. We also observe
that the performance for keys longer than 13 bytes drops. While our approach
is not capped to a specific key length, the limiting factor at this point is the
collection of plaintexts and in particular the length of those.

To study the impact of the plaintext length, we additionally apply Kandi
with different values for the overlap ratio r as introduced in Section 3.3. The
corresponding deobfuscation rates are visualized in Figure 5(b). Although a high
value of r potentially increases the performance, it also reduces the number
of plaintexts that can be used. If there are too few usable plaintexts, it gets
difficult to estimate the correct key. As a result, Kandi attains a deobfuscation
performance of almost 100% for r = 1.0 if the keys are short, but is not able to
reliably break obfuscations with longer keys.

Runtime Performance. We additionally examine the runtime performance of
Kandi. For this purpose, we randomly draw 1,000 samples from the obfuscated
PE files for each key length and repeat the previous experiment single-threaded
on an Intel Core i7-2600K CPU at 3.40GHz running Ubuntu 12.04. As baseline
for this experiment, we implement a generic brute-force attack that is applied to
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Fig. 6. Runtime performance of Kandi in comparison to a brute-force attack on a
batch of 1,000 randomly drawn obfuscated PE files.

the first 256 bytes of each file. Due to the defined starting point and the typical
header structure of PE files 256 bytes are already sufficient to reliably break the
obfuscation in this setting. Note that this would not be necessarily the case for
embedded malware.

The results of this experiment are shown in Figure 6 where the runtime and
throughput of each approach are shown on the y-axis and the key length on the
x-axis. Obviously, the brute-force attack is only tractable for keys of at most 3
bytes. By contrast, the runtime of Kandi does not depend on the key length and
the method attains a throughput of 16.46 Mbit/s on average, corresponding to an
analysis speed of 5 files of ∼400 kB per second. Consequently, Kandi’s runtime
is not only superior to brute-force attacks but also significantly below dynamic
approaches like OmniUnpack [17] or PolyUnpack [18] and thus beneficial for
analyzing embedded malware at large scales.

Deobfuscation of Injected PE Files. As last controlled experiment, we study
the deobfuscation performance of Kandi when being operated on obfuscated PE
files that have been injected into Word documents. Figure 7(a) shows the results
of this experiment. For keys with up to 8 bytes, our method deobfuscates most of
the injected PE files—without requiring the document to be parsed. Moreover,
we again inspect the influence of the overlap ratio r in this setting. Similar to
the previous experiment, a larger value of r proves beneficial for short keys, such
that keys up to 8 bytes are broken with a success rate of 81% and more. This
influence of the overlap ratio gets evident for keys between 4 and 8 bytes as
illustrated Figure7(b). For keys of length l = 8 a high value of r even doubles
the deobfuscation performance in comparsion to the default setting.

Due to this, we use an overlap ratio of r = 1.0 for the following experiments on
real-world malware. We expect embedded malware found in the wild to mainly
use keys of 1 to 8 bytes. The reasons for this assumption is that such keys fit into
CPU registers and therefore implementations are more compact. Furthermore,
4-byte keys are already intractable for brute-force attacks.
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Fig. 7. Deobfuscation performance of Kandi on Word documents containing obfus-
cated PE files. Figure (b) shows the performance for different overlap ratios.

4.2 Real-World Experiments

To top off our evaluation we proceed to demonstrate how Kandi is able to
deobfuscate and extract malware from samples seen in the wild. To this end, we
have acquired four datasets of real-world malware embedded in documents and
images with different characteristics.

Table 2. Overview of the four datasets of malicious documents and images.

Dataset name Type Formats Samples

Exploits 1 Documents DOC, PPT, RTF 992
Exploits 2 Documents DOC, PPT, RTF 237
Dropper 1 Documents DOC, PPT, RTF 336
Dropper 2 Images PNG, GIF, JPG, BMP 52

Total 1,617

Malware Datasets. Embedded malware is typically executed by exploiting
vulnerabilities in document viewers. For the first dataset (Exploits 1 ) we thus
retrieve all available Word, Powerpoint and RTF documents from VirusTotal
that are detected by an anti-virus scanner and whose label indicates the presence
of an exploit, such as exploit.msword or exploit.ole2. Similarly, we construct
the second dataset (Exploits 2 ) by downloading all documents that are tagged
with one of the following CVE numbers: 2003-0820, 2006-2492, 2010-3333,
2011-0611, 2012-0158 and 2013-0634.

As our method specifically targets PE files embedded in documents, we ad-
ditionally compose two datasets of malware droppers. The first set (Dropper 1 )
contains all available Word, Powerpoint and RTF documents that are detected
by an anti-virus scanner and whose label contains the term dropper. The second
dataset (Dropper 2 ) is constructed similarly by retrieving all malicious images
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labeled as dropper. An overview of all four datasets is given in Table 3. We
deliberately exclude malicious PDF files from our analysis, as this file format al-
lows to incorporate JavaScript code. Consequently, the first layer of obfuscation
is often realized using JavaScript encoding functions, such as Base64 and URI
encoding. Such encodings are not available natively for other formats and hence
we do not consider PDF files in this work.

Table 3. Deobfuscation performance of Kandi on real-world malware. The last
columns detail the number of samples that were successfully deobfuscated.

Dataset Not Obfuscated Obfuscated Deobfuscated by Kandi

Exploits 1 211 781 180 23.1%
Exploits 2 35 203 64 31.7%
Dropper 1 86 250 81 32.4%
Dropper 2 27 25 9 36.0%

Total 359 1,258 334 26.6%

Deobfuscation of Embedded Malware. We proceed to apply Kandi to the
collected embedded malware. Due to minor modifications by the malware author,
it is not always possible to extract a valid PE file. To verify if a deobfuscation
attempt was successful we thus utilize a PE checker based on strings such as
Windows API function (e.g. LoadLibrary, GetProcAddress, GetModuleHandle)
and library names as found in the import table (e.g. kernel32.dll, user32.dll)
Additionally, we look for the MZ and PE header signatures and the DOS stub.
We consider a deobfuscation successful if either a valid PE file is extracted or at
least five function or library names are revealed in the document.

We observe that for 359 of the samples no deobfuscation is necessary, as
the embedded malware is present in clear. Kandi identifies such malware by
simply returning an obfuscation key of 0x00. We support this finding by applying
the PE checker described earlier. The remaining 1,258 samples are assumed
to be obfuscated. Every fourth of those samples contains malware obfuscated
with the Vigenère cipher and is deobfuscated by Kandi. That is, our method
automatically cracks the obfuscation of 334 samples and extracts the embedded
malware—possibly multiple files per sample. Table 3 details the results for the
individual datasets. A manual analysis of the remaining files on a sample basis
does not reveal obvious indicators for the Vigenère cipher and we conclude that
Kandi deobfuscates most variants used in real-world embedded malware.

Figure 8(a) shows the distribution of the key lengths discovered by Kandi.
The majority of samples is obfuscated with a single-byte key and seems to be in
reach for brute-forcing. However, to do so one would need to precisely locate the
encrypted file, which is not trivial. Moreover, our method also identifies samples
with longer keys ranging from 3 to 8 bytes that would have been missed without
the help of Kandi. Rather surprising are those samples that use 3 bytes as a
key. One would suspect these to be false positives, but we have manually verified
that these are correctly deobfuscated by our method.
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Fig. 8. (a) Distribution of key lengths detected by Kandi; (b) Number of anti-virus
scanners detecting the extracted malware binaries.

As the final step of this experiment, we analyze the extracted malware bina-
ries with 46 different anti-virus scanners provided by VirusTotal. Since some of
these scanners are prone to errors when it comes to manipulated PE headers,
we consider only those 242 deobfuscated malware binaries that are valid PE files
(conform to the format specification). The number of detections for each of these
files is shown in Figure 8(b). Several binaries are poorly detected by the anti-
virus scanners at VirusTotal. For instance, 19% (46) of the binaries are identified
by less than 10 of the available scanners. This result suggests that the extracted
binaries are unkown to a large portion of the anti-virus companies—likely due
to the lack of tools for automatic deobfuscation.

Finally, the analyzed binaries also contain several samples of the MiniDuke
malware discovered in early February 2013 [6]. A few months back, this threat has
been completely unknown, such that we are hopeful that binaries deobfuscated
by Kandi help the discovery of new and previously unknown malware.

5 Limitations

The previous evaluation demonstrates the capabilities of Kandi in automati-
cally deobfuscating embedded malware. Our approach targets a specific form of
obfuscation and thus cannot uncover arbitrarily obfuscated code in documents.
We discuss limitations resulting from this setting in the following and present
potential extensions of Kandi.

Obfuscation with Other Ciphers. Our approach builds on classic attacks
against Vigenère ciphers. If a different cryptographic cipher is used for the ob-
fuscation, our method obviously cannot recover the original binary. For example,
the RC4-based obfuscation used in the trojan Taidoor [28] is resistant against
probable-plaintext attacks as used for Kandi. However, the usage of standard
cryptographic primitives, such as RC4 and AES, can introduce detectable pat-
terns in native code and thereby expose the presence of embedded malware in
documents [see 4]. To stay under the radar of detection tools, attackers need to
carefully balance the strength of obfuscation and its detectability, which provides
room for further cryptographic attacks.
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Availability of Plaintexts. The efficacy of probable-plaintext attacks criti-
cally depends on a sufficiently large set of plaintexts. If no or very few plaintexts
are available, the obfuscation cannot be reliably broken. As a result, attackers
might try to eliminate predicable plaintexts from their code, for example, by
removing header information or avoiding common libraries. Designing malware
that does not contain predictable plaintexts is feasible but requires to expend
considerable effort. In practice, many targeted attacks therefore use multiple lay-
ers of obfuscation, where only few indicative patterns are visible at each layer.
Our evaluation demonstrates that this strategy is often insufficient, as Kandi
succeeds in breaking the obfuscation of every fourth sample we analyzed.

Other Forms of Vigenère-based Obfuscation. Our implementation of Kandi
is designed to deobfuscate streams of bytes as generated by native obfuscation
code. Consequently, the method cannot be directly applied to other encodings,
as for example employed in malicious PDF documents using JavaScript code.
However, with only few modifications, Kandi can be extended to also support
other streams of data, such as unicode characters (16 bit) and integers (32 bit). In
combinations with techniques for detection and normalization of common encod-
ings, such as Base64 and URI encoding, Kandi might thus also help in breaking
Vigenère-based obfuscations in PDF documents and drive-by-download attacks.
However, extending the Vigenère cipher by, for instance, introducing chaining
defines a different (although related) obfuscation and cannot be handled with
the current implemention of Kandi. We leave this to future work.

6 Related Work

The analysis of embedded malware has been a vivid area of research in the
last years, in particular due to the increasing usage of malicious documents
in targeted attacks [e.g., 1, 6, 28]. Several concepts and techniques have been
proposed to locate and examine malicious code in documents. Our approach is
related to several of these, as we discuss in the following.

Analysis of Embedded Malware. First methods for the identification of
malware in documents have been proposed by Stolfo et al. [27] and Li et al. [15].
Both make use of content-based anomaly detection for learning profiles of regular
documents and detecting malicious content as deviation thereof. This work has
been further extended by Shafiq et al. [21], which refine the static analysis of doc-
uments to also locate the regions likely containing malware. Although effective
in spotting suspicious content, these methods are not designed to deobfuscate
code and thus are unsuitable for in-depth analysis of embedded malware.

Another branch of research has thus studied methods for analyzing mali-
cious documents at runtime, thereby avoiding the direct deobfuscation of em-
bedded code [e.g., 8, 15, 20]. For this dynamic analysis, the documents under
investigation are opened in a sandbox environment, such that the behavior of
the application processing the documents can be monitored and malicious ac-
tivities detected. These approaches are not obstructed by obfuscation and can
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reliably detect malicious code in documents. The monitoring at run-time, how-
ever, induces a significant overhead which is prohibitive for large-scale analysis
or detection of malware at end hosts.

Recently, a large body of work has focused on malicious PDF documents.
Due to the flexibility of this format and its support for JavaScript code, these
documents are frequently used as vehicles to transport malware [25]. Several con-
trasting methods have been proposed to spot attacks and malware in JavaScript
code [e.g., 5, 13] and the structure of PDF files [e.g., 23, 29]. While some ma-
licious PDF documents make use of Vigenère-based obfuscation, other hiding
strategies are more prominent in the wild, most notably the dynamic construc-
tion of code. As a consequence, we have not considered PDF documents in this
work, yet the proposed deobfuscation techniques also apply to Vigenère ciphers
used in this document format.

Deobfuscating and Unpacking Malware. Aside from specific work on em-
bedded malware, the deobfuscation of malicious code has been a long-standing
topic of security research. In particular, several methods have been developed
to dynamically unpack malware binaries, such as PolyUnpack [18], OmniUn-
pack [17] and Ether [7]. These methods proceed by monitoring the usage of
memory and identifying unpacked code created at runtime. A similar approach
is devised by Sharif et al. [22], which defeats emulation-based packers using
dynamic taint analysis. These unpackers enable a generic deobfuscation of mali-
cious code, yet they operate at runtime and, similar to the analysis of documents
in a sandbox, suffer from a runtime overhead.

Due to the inherent limitations of static analysis, only few approaches have
been proposed that are able to statically inspect obfuscated malware. An exam-
ple is the method by Jacob et al. [11] that, similar to Kandi, exploits statistical
artifacts preserved through packing in order to analyze malware. The method
does not focus on deobfuscation but rather efficiently comparing malware bina-
ries and determining variants of the same family without dynamic analysis.

Probable-Plaintext Attacks. Attacks using probable and known plaintexts
are among the oldest methods of cryptography. The Kasiski examination used
in Kandi dates back to 1863 [12] and similarly the key elimination of Vigenère
ciphers is an ancient approach of cryptanalysis [see 19]. Given this long history
of research and the presence of several strong cryptographic methods, it would
seem that attacks against weak ciphers are largely irrelevant today. Unfortu-
nately, these weak ciphers regularly slip into implementations of software and
thus probable-plaintext attacks based on classic techniques are still successful,
as for instance in the cases of WordPerfect [2] and PKZIP [24].

To the best of our knowledge, Kandi is the first method that applies these
classic attacks against obfuscation used in embedded malware. While some high-
profile attack campaigns have already moved to stronger ciphers, such as RC4
or TEA, the convenience of simple cryptography and the risk of introducing
detectable patterns with involved approaches continues to motivate attackers to
use weak ciphers for obfuscation.
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7 Conclusion

Malicious documents are a popular infection vector for targeted attacks. For this
purpose, malware binaries are embedded in benign documents and executed by
exploiting vulnerabilities in the program opening them. To limit the chances
of being detected by anti-virus scanners, these embedded binaries are usually
obfuscated. In practice this obfuscation is surprisingly often realized as sim-
ple Vigenère cipher. In this paper, we propose Kandi, a method that exploits
well-known weaknesses of these ciphers and is capable of efficiently decrypting
Vigenère-based obfuscation. Empirically, we can demonstrate the efficacy of this
approach on real malware, where our method is able to uncover the code of every
fourth malware in popular document and image formats.

While our approach targets only one of many possible obfuscation strategies,
it helps to strengthen current defenses against embedded malware. Our method
is fast enough to be applied on end hosts and thereby enables regular anti-virus
scanners to directly inspect deobfuscated code and to better identify some types
of embedded malware. Moreover, by statically exposing details of the obfusca-
tion, such as the key and the operations used, our method can also be applied
for the large-scale analysis of malicious documents and is complementary to
time-consuming dynamic approaches.
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